Разработка Парпалей Александра Ильинична
Целью является создание устройства для получения водорода и кислорода с минимальными затратами электроэнергии, с устранением нерациональных затрат электрической и химической энергии, обеспечение ускорения процессов.
Поставленная задача конструкции устройства решается так: электролизер для получения водорода и кислорода электролизом водного раствора электролита включает расположенные в общем корпусе анодную и катодную камеры с электродами, подключенными к источнику постоянного напряжения, камеры соединены трубопроводами с камерой деионизации, анодная камера от катодной отделена электроизоляционной перегородкой, которая не доходит до дна общего корпуса и на ней установлен источник ультрафиолетового излучения, в анодной камере расположен монополярный электрод - анод, а в катодной расположен монополярный электрод - катод, камера диссоциации соединена с анодной и катодной камерами через сепаратор ионов электрическим градиентным полем, также анодная и катодная камеры через заборники отработанного водного раствора электролита из верхних слоев электролита соединены с камерой диссоциации, верхняя часть анодной и катодной камер подсоединена к элементам приема и передачи кислорода и водорода. В анодной и катодной камерах между анодами и катодами установлены дополнительные электроды, которые соединены между собой общим проводником, который соединяет плюсовый и минусовый выводы двух блоков источника питания постоянного тока, другие концы которых подключены соответственно к аноду и катоду, один блок питания подает стабилизированное постоянное напряжение, минимально необходимое для выделения на аноде кислорода, а второй подает стабилизированное постоянное напряжение минимально необходимое для выделения на катоде водорода, а материал дополнительных электродов выбран из ряда материалов, на которых перенапряжение для водорода и кислорода превышает разность между напряжениями, поданными на анод и катод в рабочем режиме. Уровень напряжения каждого блока в рабочем режиме составляется из внутреннего падения напряжения блока питания, сопротивления проводников, напряжения перехода диссоциированных в камере диссоциации, разделенных сепаратором и возбужденных световым излучением ионов в молекулы газов с учетом дополнительного перенапряжения на электродах, которое зависит от материала электрода. Общий проводник заземлен. Анод сделан из титана, катод из губчатого графита, а электроды, которые соединены между собой общим проводником - из хромоникелевой стали.
Таким образом, представленная конструкция позволяет изготовить электролизер для получения водорода и кислорода с минимальными затратами электроэнергии, с устранением нерациональных затрат энергии электрической и химической, с обеспечением ускорения процессов электролиза. Уменьшение затрат электроэнергии достигается за счет оптимального выбора напряжения и уменьшение сопротивления за счет расположения электродов анода и катода на малом расстоянии от дополнительных электродов, на которые благодаря перенапряжению, которое превышает перенапряжение на анодах и катодах, не выделяется газ из ионов противоположного знака. Ускорение процессов также обеспечивается расположением электродов и камер.
Схема конструкции электролизера

Электролизер для получения водорода и кислорода из водного раствора электролита включает общий корпус 1 из электроизоляционного материала, в котором находится анодная камера 2, катодная камера 3 и камера диссоциации 4. Анодная камера от катодной отделена электроизоляционной перегородкой 5, которая не доходит до дна совместного корпуса 1 и обеспечивает герметичное разделение камер по верхней части, в которой собирается выделяющийся газ. Камера диссоциации 4 отделена герметичной электроизоляционной перегородкой 6 по всей высоте и соединена с анодной камерой 2 и катодной камерой 3 через приемник отработанного водного раствора 7, насос 8 и фильтр 10, через трубопровод 11, сепаратор ионов 12, в котором монополярные электроды сепаратора 13 и 14 расположены ниже низа перегородки. Электроды закреплены на пластинах 15 и 16, изготовленных из электропроводного материала, через прокладку из электроизоляционного материала 17 и подключены к источнику постоянного тока напряжением 30 В. Под перегородкой 5, которая разделяет анодную камеру 2 от катодной 3, сделан выход из канала в анодную и катодную камеры, который образовывается пластинами 15 и 16 и ограничивает поток водного раствора из камеры диссоциации. На соединении ограничителей потока 15 и 16 выполнены отверстия 18, к которым подсоединены трубопроводы 11 из камеры диссоциации 4. Анодная камера 2 и катодная камера 3 соединены с камерой диссоциации 4 через заборники отработанного электролита 19 и 20, через насос 9, фильтр деионизатор 21, трубопровод 22. Дополнительные электроды 23 расположены между катодов 26, изготовленных из губчатого графита, а дополнительные электроды 24 расположены между электродов анодов 27, изготовленных из титана, а дополнительные электроды 23 и 24 изготовлены из хромоникелевой стали 12Х18Н10Т. Все электроды созданы из пластин, которые собраны в блоки и закреплены на стенках корпуса 1. К верхней крышке 28 подсоединены трубопроводы для отвода водорода и кислорода. На трубопроводах установлены: фильтр осушения 29, манометр 30, запорный клапан 31 для водорода, манометр 32 и запорный клапан 33 для кислорода.
Для пополнения электролизера водой установлены запорный клапан 34 и фильтр 35 и подведена труба 36 к трубе 22. Лампа ультрафиолетового излучения 37 установлена в нижней части перегородки 5, перпендикулярно к пластинам анода 27 и катода 26, и обеспечивает облучение анодной, катодной камер и промежутка между пластинами. Насосы 8 и 9 приводят в действие электродвигатели 38 и 39.
В сечении
